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A new method of assessing the efficiency and uniformity of particular application of a single-to-triple beam conversion for 
obtaining structured beam configurations is investigated. Conversion efficiency and signal uniformity in the object space are 
related to the fractal properties in the DOE spatial frequencies as revealed by the multifractal spectrum (MFS), and the 
associated complex microstructure measured by the Lempel-Ziv complexity (LZC). By directly evaluating MFC and LZC in 
the DOE plane one can have a complementary instrument when designing phase holograms. These quantities are 
furnishing valuable technological information for the manufacturing stage: higher values for MFS require greater imprinting 
finesse, precision, and control, while higher values for LZC need more gray levels, more complex algorithms and more 
processing resources. In the exploitable range for optical tweezers applications there were revealed correlations of the pairs 
MFS↔efficiency and LZC↔uniformity. Experimental implementation qualitatively confirms the computational simulations. 
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1. Introduction 
 
The aim to produce low cost, highly controlled 

structured beams for optical interconnections [1], 
lithographic fabrication of photonic crystals [2], or 
biological microscopy [3] is requiring holographic 
methods to generate the appropriate diffractive optical 
elements (DOEs); particularly, the obtaining of 
continuously shaped beam or stepped multiple-beam of 
spatially controlled phase and/or intensity distribution for 
optical tweezers purposes is a promising way to effectively 
handling the biological tissues down to the sub-cellular 
level.  

Here a new method of assessing several properties of 
a single-to-triple beam conversion is investigated. 
Conversion efficiency and signal uniformity in the object 
plane are related to the fractal properties in the DOE – i.e. 
Fourier – plane in terms of the coarseness of the 
underlying spatial frequencies as revealed by the 
multifractal spectrum (MFS), and the associated complex 
microstructure measured by the Lempel-Ziv complexity 
(LZC).  

The structure of the study is as follows: Sect.2 is 
briefly mentioning the principle of DOE design and 
simulation, and the relevant quantities as well; Sect.3 is 
presenting the results and the subiacent comments; finally, 
the concluding remarks are reviewing the main findings 
and original contributions.  

 
 
 

2. Theoretical background 
 
2.1 DOE simulation and experiment 
 
In the stepped multiple-beam approach used in the 

present work, the phase DOEs are designed to split the 
energy of the unique incident beam in three but only three 
emerging rays. DOEs were generated by an iterative 
Fourier transform algorithm (IFTA) implemented with 
MatLab software [4] by imposing constraints on i) output 
signal configuration Sobject i.e. three emerging spots in the 
object space; ii) conversion efficiency, defined as the ratio 
between the intensity in the signal window and the 
intensity in the whole matrix in the object space whose  
ideal value tends to one; iii) uniformity of the intensities – 
in the sense of the ratio of the sum of the intensities in the 
first order to the intensity of the central spot. For equal 
intensities the uniformity is of 67%. The central ray is 
zero-order diffracted while the nearest two are of order 
one. They are fully symmetrical with respect to the central 
one. The diffracted energy in the following orders should 
be zero.  

Briefly, in the Fraunhofer approximation, the 
unknown transfer function tDOE of the hologram is the 
solution of an integral equation of the form 
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where Sobject is the output constraint on the field 
distribution, λ the wavelength and k=2π/λ the 
wavenumber of the input field restricted to a circular 
aperture, (x,y) and (x0,y0) the coordinates in the DOE and 
object plane, respectively, and z the distance between the 
DOE and object planes.  

The dependence on the varying parameters namely the 
central spot diameter D and the inter-spot distance L of 
MFS, LZC, conversion efficiency and signal uniformity 
are investigated. Whatever the space – object or Fourier – 
of the analyzed quantity, L and D are expressed in pixels 
in the object space. One should note that overlapping of 
the beams L<D is allowed and the corresponding region 
L/D<1 is the most interesting for optical tweezers.  

 

 
 

Fig.1. Signal window in triple beam configuration: 
central spot diameter D, and inter-spot distance L. 

 
 
2.2 Multifractal spectrum 
 
When dealing with the matrix version of DOE it is 

easy to create the 1-dim sequence of its lines (columns) in 
order to obtain a series of samples {s(n)}n=1,N whose the 
standard multifractal detrended fluctuation analysis (MF-
DFA) can be applied [5]. The series are of more than 
N=15,000 data points each. Usually, the richness of 
multifractal spectra can be evaluated in terms of the 
difference Δα=αmax−αmin, where αmax and αmin are the 
extreme values of the Hölder exponents α that characterize 
the irregularities of the data points in the series [6]: 

 
( ) ( ) α−≤−− 00 nnCnnPns m    (2) 

 
In Eq.(2) Pm is the polynomial of order m that 

approximates the series in the current point sn, and C is a 
constant. The larger Δα, the broader the spectrum. Since 
there are difficulties in computing the extreme values, here 
the multifractal spectrum is evaluated as the deviation 
from a monofractal structure [7] 

 
H−α=δ 0 .               (3) 

 
In Eq.(3) α0 is the Hölder exponent assigned to the 

greatest fractal dimension α0↔f(α0) of the subsets, while H 
is the Hurst exponent [8].  

Most software packages are directly providing the bell 
shaped pattern (α, f(α)) with the possibility of finding the 
coordinates of any point on the curve, including its 

maximum, so that α0  could be easily found; on the other 
side, the Hurst exponent is also available in packages 
using MF-DFA, or might be easily computed by locally 
software; FracLab package is providing such tools. 

 
2.3 Lempel-Ziv complexity 
 
To compute LZC, the numerical sequence of data has 

to first be transformed into a binary sequence consisting of 
only two symbols: 0 and 1. This is achieved by comparing 
the data with a threshold, usually the median and 
whenever the signal is larger than or equal to the threshold 
the particular data is replaced by 1, otherwise by 0. The 
next step is parsing the obtained symbolic sequence i.e. 
identifying the number of distinct words present in the 
sequence. The complexity counter is given by the number 
of distinct patterns contained in the sequence. Details on 
the parsing procedure can be found in [9].  

Here the normalized LZC is computed: it gives the 
complexity of a string relative to that of a genuinely 
random one. As the length approaches infinity, the 
normalized LZC index approaches unity. A very complex, 
noise-like experimental series could have LZC index 
slightly larger than unity because of the finite length. 
Hereafter LZC is denoting the normalized index. The 
computation is performed using the Chaos Data Analyzer 
[10]. 

All quantities are evaluated for simulations only. 
Finally, the DOE were implemented and verified on a 
spatial light modulator (SLM). 

 
 
3. Results and discussion 
 
Based on IFTA simulations, the conversion efficiency 

and signal uniformity in the object space are compared 
with MFS and LZC of the corresponding DOEs for several 
values of L and D. The variation of MFS is shown in 
Fig.2. It exhibits a knoll along the plane L=D. The valley 
in the region L/D<1 is softer than in the opposite one 
L/D>1. 

 

 
Fig. 2. MFS dependence on central spot diameter D, and 

inter-spot distance L.   
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Even the other quantities are not following similar 
variations, there are portions of intervals revealing similar 
behaviours; such an example is shown in Fig. 3. Apart 
from the local maxima, the trends are supporting the fact 
that light scattering improves on more irregular and 
consequently “more multifractal” diffractive gratings [11]. 
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Fig. 3. MFS (a) and efficiency (b) vs. inter-spot distance. 
 
According to the graphs above, one can correlate the 

efficiency with MFS, especially in the case of DOEs that 
are closer to monofractal structure (see Fig. 4).  
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Fig. 4. Underlying relation between conversion efficiency 
and MFS. 

 
 

Analogously, but depending on the spot diameter, 
another similarity between LZC and uniformity is shown 
in Figs. 5 and 6.  

Higher values for LZC indicate diminished 
correlations. Apart from the periodicity induced by the 

consecutive lines of the matrices, the loosing of 
correlations is the consequence of the whitening of the 
signal in the inner data content of every line of the 
matrices. Not surprisingly, the uniformity tends also to 
follow LZC: the Fourier transform of uniform top hat 
distributions in the object space are satisfactory 
approximated by Gaussians in the DOE space; to the limit 
– still far in the present cases –, when narrowing the hat 
toward the Dirac-like pulse, the Gaussian extend toward 
the white noise characterized by LZC tending to unity. 

By eliminating the spot diameter one can obtain the 
image of the underlying relation between uniformity and 
LZC. 
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Fig. 5. LZC (a) and uniformity (b) vs. central spot 
diameter. 
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Fig. 6. Underlying relation between uniformity and LZC. 
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There are not positive correlations among the other 
pairs MFS↔uniformity and LZC↔efficiency; on the 
contrary there, is an apparently weak anticorrelation 
between LZC – and consequently uniformity – on one 
side, and efficiency, on the other side, when comparing 
Fig. 5 (a) and Fig. 7 (a).  

 
 

Efficiency (%)

50
50.1
50.2
50.3
50.4
50.5
50.6
50.7
50.8
50.9

51

0 20 40 60 80 100 120 140 160 180

Spot Diameter

Distance L=50

 
(a) 

 
Efficiency (%)

y = -- 2.9545x + 51.199

50.1
50.2
50.3
50.4
50.5
50.6
50.7
50.8
50.9

51

0.15 0.2 0.25 0.3 0.35

Lempel-Ziv Complexity

Distance L =50

 
 

(b) 
 

Fig. 7. Efficiency vs. central spot diameter (a), and anti-
correlation between LZC and efficiency (b). 

 
 
 

Generally, the increase of the pattern complexity 
makes the dependences uncontrollable, especially in the 
upper range when LZC is approaching the unity. However, 
for lower values, as the case, the result has to be taken 
cautiously. The variations are small and more 
investigations are necessary.      

The experiments were then performed with a SLM 
model Sony LCX016AL coupled to the appropriate 
computational hardware. The real triple beam grabbed 
with a commercial CCD camera and its corresponding 
DOE are shown in Fig.8 for the case of equal intensities. 
Uniformity and efficiency are qualitatively approaching 
the simulations mainly because of the top hat 
approximation. 

 
 
 
 

 
(a) 

 

 
 (b) 

 
Fig. 8. Triple beam (a), and the corresponding IFTA 

generated hologram (b). 
 

 
 
4. Conclusions 
 
A method of assessing some properties of a single-to-

triple beam conversion is investigated by relating 
conversion efficiency and signal uniformity to the fractal 
properties in spatial frequency domain namely MFS and 
LZC. In the exploitable range for optical tweezers 
applications i.e. 0.5<L/D<1.5 there were revealed 
correlations of the pairs MFS-efficiency and LZC-
uniformity. 

By directly evaluating MFC and LZC in the DOE 
plane one can have a complementary instrument when 
designing phase holograms. These quantities are 
furnishing valuable technological information in the 
manufacturing stage: higher values for MFS require 
greater imprinting finesse, precision, and control, while 
higher values for LZC need more gray levels, complex 
algorithms and processing resources.   

It is not possible to have a global optimum i.e. 
maximum uniformity, minimum LZC and MFC.  

The analyses were performed on simulated quantities 
when synthesizing DOEs in order to get appropriate 
intensity distributions, with maximum efficiency; the 
uniformity remains subject to the particular application. 
The experimental implementations are satisfactory fitting 
the simulations.   
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